F1 RETICLEMLR2.0

NICHTFORCE
Nightforce 3.5-15×50 F1 NXS ${ }^{\text {TM }}$ first focal plane riflescopes
Allows for multiple elevation or windage holdoffs
without touching adjustment knobs

Red indicates illuminated portion of reticle

Applications:
Field tactical
Long-range shooting
Tactical competition

F1 RETICL MLR2.0

The MLR2.0 ${ }^{\text {TM }}$ evolved from one of our original Mil-Radian reticle designs, and was specifically designed and optimized for the Nightforce $3.5-15 \times 50$ F1 NXS ${ }^{\text {TM }}$ first focal plane riflescope.

The MLR2.0 ${ }^{\text {TM }}$ reticle is marked in .5 and 1 mil divisions. This allows the shooter to utilize holdover and holdunder references, and apply windage compensation without adjusting the elevation or windage knobs on the scope. Elevation points are numerically identified in $2,4,6$ and 8 mil increments; windage points in 2 and 4 mil increments.

The MLR2.0 ${ }^{\text {TM }}$ is an ideal complement to Nightforce Mil-radian adjustment turrets.

Reticle subtensions

A	10.0 MILS / 34.378 MOA
B	$0.8 \mathrm{MIL} / 2.750 \mathrm{MOA}$
C	$0.2 \mathrm{MIL} / 0.688$ MOA
D	$1.0 \mathrm{MIL} / 3.438$ MOA
E	2.0 MILS / 6.878 MOA
F	$0.5 \mathrm{MIL} / 1.719 \mathrm{MOA}$
G	$0.5 \mathrm{MIL} / 1.719$ MOA
H	$1.0 \mathrm{MIL} / 3.438$ MOA
I	$0.2 \mathrm{MIL} / 0.688 \mathrm{MOA}$
J	0.06 MIL / 0.205 MOA
K	$0.2 \mathrm{MIL} / 0.688$ MOA
L	5.0 MILS / 17.189 MOA
M	0.15 MIL / 0.515 MOA

Designed for maximum performance in Nightforce 3.5-15 $\times 50$

 F1 NXS ${ }^{\text {TM }}$ first focal plane riflescopes- Improved visibility in low light

Reticle subtension remains in proportion to the target across the entire magnification range

Illumination standard
Able to range in increments as small as . 2 mils

The Nightforce MLR2.0 ${ }^{\text {TM }}$ reticle can provide you with an accurate distance to your target, when the size of the target is known, by utilizing one of the the following Mil relation formulas:

Target Size in Inches : Image Size Measured in Mils in Reticle x $\mathbf{2 7 . 7 7}=$ Distance in Yards
Target Size in Inches : Image Size Measured in Mils in Reticle x $25.4=$ Distance in Meters
Target Size in Centimeters \div Image Size Measured in Mils in Reticle x 10.93 = Distance in Yards
Target Size in Centimeters - Image Size Measured in Mils in Reticle x 10 = Distance in Meters
For example, a standard stop sign measures 30 " tall x 30 " wide. Knowing the size of the target, in this case, a stop sign, and applying the correct formula above, you will be able to accurately calculate the distance to your target.

1. Known target size $=30$ "
2. Image size $=2.5$ Mils. To measure image size of target in Mils, refer to the reticle diagram above.
3. Divide target size (30") by image size in reticle (2.5) $=12$
4. For distance in yards, multiply 12×27.77 (constant) $=333.24$ yards to target.
5. For distance in meters, multiply 12×25.4 (constant) $=304.8$ meters to target

Your ability to accurately measure your target in your reticle does take some practice to become proficient.

